
Beam Envelope Equations in a Solenoidal Field

G. Penn

UCB Physics / LBNL CBP

7 January 2000

MUON COLLIDER NOTE 71

Revision 1

Abstract

Ionization cooling of muons requires strong focussing of beams at the absorbers; solenoid
magnets are required for cooling channels designed to use this mechanism. Assuming a cylin-
drically symmetric beam and using the single particle equations of motion, a set of transverse
beam envelope equations are derived in the paraxial approximation. These equations incor-

porate the main factors in ionization cooling: interactions with material, acceleration by radio
frequency (RF) cavities, and the possible accumulation of canonical angular momentum. The
dominant nonlinear e�ect is the mirror force, which leads to estimates of beam correlation

parameters for a matched beam. This formalism, analogous to the Courant-Snyder notation
for systems of quadrupole lenses, allows for an analysis of lattice con�gurations beginning

with thin lenses and then progressing to lattices of extended magnets. A categorization of
lattice types connects this analysis with previous descriptions of cooling channels, including

a \phase diagram" of lattice properties versus magnetic �eld pro�le. Scaling laws for channel
performance are derived and exhibit good agreement with realistic lattice designs.
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1. Introduction

In lattices designed for cooling of muon beams, the focussing will be accomplished through

solenoidal magnets centered on the beam axis. A theoretical framework for understanding

beam propagation and analysing lattice designs is built up and used to characterize some of

the options for cooling channels. First, the single particle motion and appropriate betatron

function in solenoid �elds are described in a way that incorporates any canonical angular

momentumcarried by the beam. This formulation, adapted from the Courant-Snyder formal-

ism for quadrupole focussing, o�ers a reliable correspondence in the paraxial approximation

between lattices using solenoids and those using quadrupole magnets.

Equations for the single particle motion are obtained, and in the linear approximation

constants of the motion are found. Proceeding to examine a simpli�ed distribution of par-

ticles, a generalization of the beta function is described that allows for the case where net

canonical angular momentum is carried by the beam. General scaling laws are given, as well
as paraxial beam envelope equations incorporating energy loss in material, multiple scatter,
and radio frequency (RF) acceleration.

Nonlinear e�ects are described, and they can cause signi�cant growth in the rms emit-
tance of a Gaussian beam. The coupling between longitudinal and transverse phase space
is complicated, but mostly a�ects the forward momentum. In the transverse equations of
motion, coupling only appears in third order corrections.

Idealized thin lens systems and then extended magnet geometries are examined, and

used to put into context speci�c cooling channels which have been proposed previously.
Furthermore, possibilities for new cooling channels are suggested by this analysis.

2. Single Particle Motion in a Solenoidal Field

We �rst consider single particle equations of motion in vacuum with magnetic �elds only,
and incorporate nonlinear e�ects. The magnetic �eld inside of a cylindrically symmetric
solenoid is given by

~B = �@A�

@z
êr +

1

r

@

@r
(rA�)êz;

where A�(r; z) satis�es
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where B(z) � Bz(r = 0; z). The equations of motion are
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Also, x0 = Px=Pz and y0 = Py=Pz . The constants of motion are P 2 (equivalently, energy)

and the canonical angular momentum,

Lcanon = xPy � yPx + qrA�:

We can simplify these expressions if we consider a rotating coordinate frame (the Larmor

frame). Thus, using rotated coordinates

XR = x cos'� y sin'; YR = x sin'+ y cos';

and de�ning '0 = �, we have

X 0

R = x0 cos'� y0 sin'� �YR

Y 0

R = y0 cos'+ x0 sin'+ �XR:

Consider the quantity

Pz(XRY
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0
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�
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�
;

this is equal to the canonical angular momentum if we set

� =
qA�

Pzr
' qB(z)

2Pz
:

Note that as here de�ned �(r; z) depends on transverse position, but to lowest order is
proportional to B(z)=Pz.

The equations of motion in terms of these rotating coordinates can be simpli�ed to
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Linearly, this is just

X 00

R = �
 
qB(z)

2Pz

!2

XR; (1)

and similarly for YR, with nonlinear terms only appearing to third order.
The longitudinal dynamics, which in vacuum only has nonlinear terms related to the

mirror force, is given by

P 0

z = q
@

@z

�A�

r

� �
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0
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0

R �
qrA�

Pz

�
:

Thus, we can solve linearly for transverse coordinates, then obtain the second order evolution
of Pz, and use this to �nd the transverse corrections to third order.
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We can de�ne a betatron function and phase by

�0 =
1

�p
;

2�p�
00

p � (�0p)
2 + 4�2

p�
2 � 4 = 0;

where �2(z) = (qB(z)=2Pz)
2 is the linearized focussing term. In contrast with quadrupoles,

the focussing strength is always positive in both transverse directions. Then the linear

solution in rotated coordinates is

XR = A1

q
�p cos(� ��1)

YR = A2

q
�p cos(� � �2);

or in the lab frame

x =
q
�p [A1 cos' cos(�� �1) +A2 sin' cos(� ��2)]

y =
q
�p [�A1 sin' cos(�� �1) +A2 cos' cos(�� �2)] :

To this order, there are two additional constants of the motion, the transverse amplitudes
A1 and A2 which correspond to the Courant-Snyder invariants. Note that the focussing looks
similar to that of a quadrupole only in the rotating coordinate frame. In terms of these
amplitudes, the angular momentum is

Lcanon ' PzA1A2 sin(�2 � �1): (2)
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Using conservation of total momentum and de�ning P 2
?
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x +P 2
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terms of the magnetic moment:
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For a slowly varying magnetic �eld (compared to the betatron period), with �p � 1=�, the
lowest order term reduces to 

P 2
?

B

!
0

' P 2
z �

0

h
A2
1 cos 2(� ��1) +A2

2 cos 2(�� �2)
i
;

which averages to zero over a betatron period. However, because the solenoidal �eld and

betatron phase can have similar length scales, the nature of the second order correction is in
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general complicated and depends on the particulars of the magnetic geometry. The evolution

of the longitudinal momentum remains consistent with

P 2
z

h
1 + (x0)2 + (y0)2

i
= P 2;

which is simpler because the transverse motion is more weakly a�ected by the longitudinal-

transverse coupling.

3. Linearized Envelope Equations

Above we examined individual particle trajectories; now we consider a simpli�ed distri-

bution in transverse phase space, which is 4-dimensional because of the coupling between x

and y co-ordinates. For a cylindrically symmetric beam, the distribution should in general

be a function of the angular momentum Lcanon and the combined amplitude A2
1+A2

2. In the
lab frame, this combined amplitude can be expressed as

A2
1 +A2

2 = 
p(x
2 + y2) + �p[(x

0)2 + (y0)2] + 2�p(xx
0 + yy0) + 2�p�(xy

0 � yx0):

Here,


p �
1

�p
(1 + �2

p + �2
p�

2);

�0p = �2�p;
and

�0p = 2�p�
2 � 
p:

Because we are using rotating co-ordinates, the above expressions are di�erent than those of
a quadrupole, where 
 = (1 + �2)=� and there are no cross terms in the amplitude.

To obtain a set of simple expressions for the envelope equation, we consider a one-
parameter family of functions of A2

1 +A2
2 and Lcanon. A convenient choice is a linear combi-

nation of the two terms,

A2
?
�
p
1 + L2(A2

1 +A2
2)� 2LLcanon

Pz
; (3)

where L is a dimensionless parameter indicating the net canonical momentum of the beam.

This is the only way to incorporate canonical momentum and still have a simple Gaussian
distribution. The particular form chosen for the combination of terms guarantees that A2

?

is always positive. A Gaussian beam will then have a distribution function given by

F =
NP 2

z

4�2m2c2�2N
exp

 
� PzA

2
?

2mc�N

!
; (4)

where �N = (Pz=mc)hA2
?
i=4 is the normalized transverse emittance; note that the term in

the exponential is composed solely of second order quantities.
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Expanding this total amplitude,
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?
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1
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?

�
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�
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where

Px = Px � q
A�

r
y and Py = Py + q

A�

r
x

are the canonical momenta, and

�
?
= �p

p
1 + L2; �

?
= �p

p
1 + L2:

We will see below that

L ' hLcanoni
2mc�N

:

Note that there is a single beta function �
?
(z) describing a cylindrically symmetric beam,

and that this is not in general the same as the single-particle function �p(z). From this point
of view, the actual choice of initial �

?
, �

?
, and L corresponds to the initial shape of the

beam envelope. It is the distribution as a whole which characterizes these parameters.
Linearly,

A�(r; z) '
r

2
Bz(r = 0; z) (5)

and

�(z) ' qBz(r = 0; z)

2Pz
' 0:15

B[T]

Pz [GeV=c]
m�1: (6)

Then the equations of motion simplify to

x00 ' �2�y0 � �0y;

y00 ' 2�x0 + �0x:

Also,
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:

The (symmetric) transverse moments matrixM for the Gaussian beam distribution given

by Eq. (4) is

x Px y Py
x �N�?mc=Pz
Px �mc�N�? mcPz�N
?
y 0 mc�N(�?� �L) �N�?mc=Pz
Py �mc�N(�?�� L) 0 �mc�N�? mcPz�N
?

(7)

where



?
� 1

�
?

h
1 + �2

?
+ (�

?
�� L)2

i
;
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and �N is the normalized transverse emittance. Because of the cylindrical symmetry, the

matrix M is also the covariance matrix; in addition, the determinant of M simpli�es to

det M =
h
hx2ihP 2

x i � hxPxi2 � hxPyi2
i2
:

The emittance satis�es the expected condition

det M = m4c4�4N :

Some other useful moments of the beam are the average mechanical angular momentum,

hxPy � yPxi = �2mc�N(�?�� L);

and the net canonical angular momentum,

hLcanoni ' 2mc�NL:

This result neglects nonlinear terms in the vector potential.
In a vacuum with only magnetic �elds, the beam parameters evolve according to

�0
?
= �2�

?

and

�0
?
= 2�(�

?
�� L)� 


?
:

The parameters L and �N are constant. This yields the envelope equation

2�
?
�00
?
� (�0

?
)
2
+ 4�2

?
�2 � 4(1 + L2) = 0; (8)

which di�ers from the single particle case only through the term 1 + L2. Any solution to
the single-particle beta function can be multiplied by

p
1 + L2 to yield a similar solution

for the beam envelope. Thus, canonical momentum always causes beams to have a larger
spot size, even when there is no actual emittance growth. In previous treatments, such as
by M. Reiser [1], the envelope equation in vacuum, where the emittance and L are constant,

show the combined e�ect of these two terms in determining the beam spot size. However, the
interpretation of describing angular momentum as providing an \e�ective" emittance turns

out not to be a useful concept when considering ionization cooling, where the uncorrelated
spread of velocities determines the e�ectiveness of cooling. It is more natural in this context

to ascribe the increase in spot size of a beam with angular momentum to an increase in the
beta function.

For a beam to be matched into a uniform solenoid, L2 = �2
?
�2 � 1, so the average

mechanical angular momentum is

hxPy � yPxi = �2mc�N

�
�
?
��

�
�2
?
�2 � 1

�1=2�
;

which always has the sign of �qBz and cannot be equal to zero. This illustrates the fact
that beams are only con�ned by solenoids when they have mechanical angular momentum
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with this orientation; if a beam is not focussed and expands, however, diamagnetic forces

generate just such a rotation and the beam will begin to experience a focussing force. Thus,

a beam in a uniform solenoid which starts out at a size hx2i = R2
0 = mc�N�?=Pz and with

no mechanical angular momentum will always undergo betatron oscillations. If the initial

�
?
= 0, then the initial transverse velocity spread is hP 2

x i = P 2
0 = mcPz�N=�? and the

parameter L = �
?
�. Then the largest size of the beam inside this solenoid occurs after a

distance �Pz=qB and is given by

R2
max = R2

0 +

�
mc�N

Pz�R0

�2
= R2

0 + 2h�2Li;

where �L � P
?
=qB is the Larmor radius of a single particle orbit. The point of maximum

beam size corresponds to half of a Larmor oscillation, where every particle is displaced by

2�L in a direction uncorrelated with its initial position. When the beam is properly rotating

to be matched, this introduces a correlation which causes the average radius of the particles

to be unaltered by the Larmor oscillations.

4. Dynamics of the Beam Envelope

The evolution of an especially simple beam distribution was considered above; this ex-

ample provides a model for analysing more general beams, as well as for parametrizing
simulation results. The moments matrix M for any cylindrically symmetric beam has four
independent terms, and can always be expressed in the form of Eq. (7) by a suitable choice
of �N , �?, �?, and L. In addition, the parameter Pz must be speci�ed because of the form
chosen for the beta function (rather than using �

?
=Pz, for example). Thus we normalize to

the average Pz, and de�ne

m4c4�4N = det M;

L =
hLcanoni
2mc�N

;

�
?

=
hx2i hPzi
mc�N

;

�
?

= �hxPxi
mc�N

: (9)

With matter and RF acceleration, the transverse properties of the beam are still adequately
de�ned by these four transverse parameters, so long as coupling to the longitudinal phase

space is weak. In addition, we will de�ne the average linear focussing force to be

� � qBz(r = 0; z)

2hPzi
: (10)

An important point is that for a general distribution, even one for which there is no net

canonical angular momentum, the envelope beta function as de�ned here need not correspond
to the single-particle beta function, and its inverse is not equal to the phase advance per
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unit length. However, this is still an informative way of parametrizing a beam, and for any

particular beam distribution these quantities can be expressed in terms of the single particle

beta function, for example by considering perturbations around Eq. (4).

The equations of motion for the beam envelope parameters, now rede�ned in terms of

the lowest-order beam moments, can be derived by �rst neglecting multiple scattering and

straggling, and assuming purely deterministic motion. Then an individual particle satis�es

x0 =
Px

Pz
; y0 =

Py

Pz
;

and

vz
d~P

dz
=

d~P

dt
= q( ~E + ~v � ~B) +

~P

P

dE

ds
: (11)

This implies that

P 0

z '
qEz

vz
+
1

v

dE

ds
+

q

Pz
(PxBy � PyBx):

In the �rst-order results below, the termPxBy�PyBx will be neglected because it is nonlinear,
being related to the mirror force. Note that dE=ds, the energy change caused by material,
is here de�ned as a negative quantity.

The averaging over particles which is performed when taking moments can be inter-

changed with the derivative, so that for example

d

dz
hx2i = h2xPx

Pz
i:

This yields an independent equation for each of the four independent terms of the moments

matrix, and allows us to determine the dynamic equations of the four beam envelope param-
eters. Moments such as hxExi are set to zero, but they could be evaluated by a rudimentary
space-charge model. These equations do couple to higher-order moments, however, lead-
ing to a hierarchy of moment equations. Here, we neglect nonlinear terms and coupling to
longitudinal motion.

First, we add the e�ect of multiple scatter to this formalism. The spread in angles caused

by multiple scatter is given by

D � d

ds
hx02i '

�
15 MeV

Pv

�2 1

LR

; (12)

using the Rossi-Greisen model [2] which �ts a Gaussian to the Moliere model of multiple

scatter. Multiple scatter adds a quantity PzPD to the rate of change in hP 2
x i and hP 2

y i, leaving
all other moments unchanged. If we assume the beam remains cylindrically symmetric, then

we can consider the beam envelope parameters to be de�ned by the beam moments as in
Eq. (9).

In the limit where transverse �elds are linear with radius and there is no coupling to
longitudinal motion, the dynamic equations for the beam envelope are:

�0N = �
?

PD
2mc

+ �N
1

vPz

dE

ds
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�0
?

= �2�
?
+ �

?

qEz

vzPz
+
�2
?

�N

PD
2mc

�0
?

= �

?
+ 2�(�

?
� �L) � �

?
�
?

�N

PD
2mc

L0 = ��
?
�

1

vPz

dE

ds
� L�

?

�N

PD
2mc

: (13)

Combined with the equation for Pz , these coupled equations determine the evolution of the

beam. An approximate form for the momentum equation including mirror forces is

hPzi0 '
qEz

vz
+

1

v

dE

ds
� 2mc�N�

0(�
?
�� L): (14)

When the electric �eld is rapidly varying in time, an average of the �eld as seen by the

particles at a given location must be taken as well.
Among the possible extensions of this paraxial theory are the inclusion of beam asymme-

tries, bending magnets, coupling to longitudinal phase space, nonlinear �elds, space charge,
and emittance growth. For example, the emittance growth in the absence of material or
applied electric �elds can be expressed as:

m2c2�N�
0

N =

�
xPx

Pz

�D
P 2
x

E
� hxPxi

*
P 2
x

Pz

+

+ hxPyi
�
qBz

Pz
xPx

�
�
�
qBz

Pz
xPy

�
hxPxi

+
D
x2
E�

Px

�
qEx

vz
� qBy

��
�
�
x

�
qEx

vz
� qBy

��
hxPxi

+

�
x

�
qEy

vz
+ qBx

��
hyPxi : (15)

The above result assumes cylindrical symmetry. With speci�ed external �elds or a suitable
model for space charge e�ects, the emittance growth can then be described in terms of a
coupling to higher-order beam moments.

5. Comparison with Quadrupoles: Thin Lens Approximation

Because quadrupole lattices are often calculated using a thin lens approximation, we �rst

consider a similar limit for lattices using solenoid focussing for the sake of comparison. We
treat bi-periodic systems, which are particularly useful as models of the solenoid geometries

being considered in Section 8.
We have found an equation for the cylindrical beta function, Eq. (8),

2�
?
�00
?
� (�0

?
)
2
+ 4�2

?
�2 � 4(1 + L2) = 0:

This is identical to the equation for a focussing quadrupole in one dimension except for the

scaling factor �
?
/ (1 + L2)1=2, if we identify �2 with the quadrupole focussing intensity

jqB0=Pz j. The focussing intensity for a solenoid is quadratic in B=Pz, however, which does
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lead to di�erent dynamics in terms of energy acceptance of a given lattice. For now we set

L = 0. We examine the properties of thin lens con�gurations to illustrate beam focussing in

solenoidal channels.

We �rst consider a thin lens of length `, which for a quadrupole has focal length f given

by
1

fquad
=
Z
dz
qB0

Pz
' `qB0

Pz
: (16)

For a solenoid,
1

fs
=
Z
dz
q2B2

4P 2
z

' `q2B2

4P 2
z

: (17)

For a periodic lattice of solenoid lenses with periodicity L, it is useful to de�ne the dimen-

sionless parameter

� =
L

f
= L`�2: (18)

Note that the sign of the magnetic �eld within each lens is irrelevant for this level of approx-
imation, where the fringe �elds from adjacent lenses do not overlap. Then for the simplest
case of thin lenses spaced L apart, the acceptance of the lattice is given by 0 < � < 4: We

are going to perturb the lattice so that each periodic unit has two lenses, so we begin with
lenses spaced by L=2. Because of this rescaling, the acceptance for � as de�ned above is

0 < � < 8:

Now, we perturb the lattice by shifting every other lens a �xed distance, so the periodicity
is now L, and we de�ne d as the shorter distance between lenses. We �nd that there
is a new resonant region around � = 4 because there the betatron tune was Q = 1=2
(180 degree phase advance in a distance L, or 90 degree phase advance between lenses) in

the unperturbed lattice. The geometry is shown in Figure 1. This de�nes two regions of
momentum acceptance, Region I with

0 < � <
2L

L� d

that accepts any momentum above some minimum value, and Region II with

2L

d
< � <

2L

d
+

2L

L � d
=

2L2

d(L � d)
:

Note that d � L=2. The transfer matrix over a distance L for the midpoint between the two
closer lenses is 

1� � + d(L� d)�2=(2L2) �(d�=2 � L) [1� d(L� d)�=(2L2)]

[(L� d)� � 2L] �=L2 1 � � + d(L � d)�2=(2L2)

!
(19)

The phase advance per cell is given by

cos 2�Q = 1� � +
d

2L2
(L� d)�2:
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d

L

f

Figure 1: Thin lens geometry, with cell length L, coil separation d, and focal length f

depicted.

Typical beta functions in Region I take their minimumvalue inside the larger gap between
lenses, and the minimum beta function grows like 1=� as momentum gets large and � ! 0.
Region II has a limited range of allowed momenta, and tends to have the minimum of the
beta function occur in the smaller gap between lenses. Region II turns out to be the more
interesting region for �nding the lowest possible beta functions, because the minimum beta
decreases as d=L decreases. This is true even if d is held �xed and L is increased, however

this results in a smaller momentum acceptance. When operating the system of lenses at
momenta corresponding to Region I, this bene�t is not seen and the minimum �

?
is stuck

with a scaling proportional to L.
In Region I, the minimum of the beta function is given by

�2
1 =

L2

2�

"
1� d(L � d)

2L2
�

#
2L � (L� d)�

2L � d�
:

In Region II, the minimum of the beta function is given by

�2
2 =

L2

2�

"
1� d(L � d)

2L2
�

#
d� � 2L

(L� d)� � 2L
:

In Region II, the minimum beta function goes to zero at the resonances which determine its

momentum acceptance, and is largest (worst) close to the center of the momentum range,

with value

�M =
d2

L

0
@1 +

s
L� 2d

L

1
A
�2

:

We de�ne the range �P=P of momentum acceptance as

P0

�
1� �P

P

�
< Pz < P0

�
1 +

�P

P

�
;
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for a quadrupole system
�P

P
=

d

2L� d
;

while for a system of solenoids

�P

P
=

d

L

0
@1 +

s
L� d

L

1
A
�2

;

which is roughly half the range as for a comparable quadrupole system because � / 1=P 2
z .

Roughly, for a given momentum acceptance, the furthest �
?
can be reduced is

�
?
' d

�P

P
' 4L

�
�P

P

�2

so the main ways of reducing the beta function are taking down the momentum acceptance
or pulling the lenses closer together, requiring stronger �elds and current densities. The
dependence of these quantities on the geometry of the lattice is illustrated with two �gures,
Figure 2 where the cell length is held �xed at 1 m, and Figure 3 where the coil separation
d is held �xed at 25 cm. Data points found numerically using a moments code [3] are also
indicated. We �nd good agreement except for the focal length. The expression

1

fs
=
Z
ds
q2B2

4P 2
z

' `q2B2

4P 2
z

consistently overestimates the strength of the lenses by about 15% because of their �nite
thickness, which was taken to be 1 cm compared to 10 cm for the focal length.
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Figure 2: Lattice characteristics in thin lens geometry, with focal length f , momentum
acceptance �P=P , and minimum beta function � shown. Fixed cell length L = 1 m, and
varying the coil separation, d.
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Figure 3: Lattice characteristics in thin lens geometry, with focal length f , momentum

acceptance �P=P , and minimum beta function � shown. Fixed coil separation d = 25 cm,
and varying the cell length, L.
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6. Scaling Laws

We keep our attention on Region II, where signi�cant advantages are to be had from

changing the geometry by closing the gap within pairs of lenses. The focal length for lenses,

and thus magnetic �eld strength for a given momentum, depends primarily on d, and only

slightly changes as di�erent trade-o�s are made between momentum acceptance and low

beta functions. Speci�cally, at the central momentum the focal length f falls in the range

0:36 d <
�

f < 0:5 d;

where the smaller f corresponds to larger momentum acceptance. This is simply due to the

fact that the focal point should be close to the minimum beta, which is a distance d=2 away

from the lens, and must be a little more strongly focussed than this because the beam is

expanding when it hits the lens.

The only place the magnetic �eld strength appears is in the term � / B=Pz, so for identi-

cal lattices the magnetic �eld can be brought down by lowering the momentum of the beam,
and the beta function will remain identical. From momentum acceptance considerations,
however, the fractional momentum spread �P=P should be kept the same, which may mean
using longer bunches.

The beta function also scales with the overall length of the cell. Note that shrinking
the entire system does not allow one to take advantage of the fact that � / B2 because

realistically, one must also shrink the length ` of each lens. In fact, if one is prevented from
shrinking the aperture of the solenoid by the size of the beam, shrinking the system may
make less of an improvement in lattice performance than a simple scaling law would suggest.
To reduce the magnetic �elds needed, it should be easier to stretch out a given geometry, at
the expense of larger beta functions, however.

On the other hand, if one is willing to trade momentum acceptance for a small beta
function, the periodicity L can be lengthened for a �xed set of pairs of solenoids, and the
beta function will roughly scale as 1=L. A useful \quality factor" for the tradeo� between
momentum acceptance and low minimum beta functions is given by

Qc �
L

�M

�
�P

P

�2
(20)

where �M is the minimum of the matched beta function evaluated at the central value for
the momentum. For a thin lens this factor ranges from roughly 0:12 for equally spaced lenses

to 0:25 for very close pairs of lenses.
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7. FOFO Lattices Described in Terms of a Single Parameter

We now begin to consider channels with extended solenoids, as opposed to thin lens

models. A particularly simple but useful model for real lattices is an axial �eld which varies

sinusoidally with longitudinal position. This is typically referred to as a FOFO lattice. Here,

the FOFO lattice is described and general scaling laws are given. The minimumbeta function

can be expressed in terms of the cell length and the distance of the central momentum from

the resonant momentum.

The magnetic �eld on axis of a FOFO lattice roughly follows a sine curve. Here we de�ne

Bmax to be the maximum of the magnetic �eld, and L to be the length of the cell, which is

one half-period of the magnetic �eld. The magnetic �eld on axis for the idealized lattice is

Bz(z) = Bmax sin

�
�z

L

�
:

The zeroes of the magnetic �eld are uniformly separated by L. Then for a given momentum
Pz, the behavior of the lattice can be described in terms of the single parameter

� � Bmax[T] L[m]

Pz[GeV=c]
: (21)

Another way to think of this parameter is to treat 1=� as a dimensionless scaling of the
momentum. For a given �, all lattice parameters are completely determined, with the length
scale being set by the cell length L. An equivalent expression is

� ' 6:671 �maxL;

where the numerical factor is equal to 2 � 109=c[m=s]. The beta function equation given by

Eq. (8) can be written in dimensionless form as

2b�b� _b2 + 0:09 �2

�
B

Bmax

�2
b2 � 4 = 0; (22)

where b � (1 + L2)�1=2�
?
=L, and the derivative is with respect to s=L.

For the FOFO lattice, the resonant momentum occurs roughly when � ' 23:9. The usual
region of interest is � < 23:9. There are isolated regions of stability beyond this value, which
have a narrow range of momentum acceptance. For example, the �rst region of stability

beyond this value of � occurs in the range 39:5 < � < 57:1, and loosely corresponds to

the \alternating solenoid" lattice. In this case the minimum beta occurs at the maximum
magnetic �eld. An example of the beta function, when Bmax = 4:75 T, L = 2 m, and

Pz = 200 MeV/c, is shown below.

It is useful to consider a rough �t to the numerical solutions, although much progress

has been made by R.C. Fernow in obtaining analytic solutions to single-particle dynamics

[4]. The �ts below are chosen in such a way that they are correct in the limit � � 1, and

properly exhibit the resonant behavior. If Pz is the central momentum of the beam, then the
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Figure 4: Analytic calculations of �
?
for a FOFO magnetic �eld when Bmax = 4:75 T, L = 2

m, and Pz = 200 MeV/c. This corresponds to the central momentum of the second region
of stability, where the acceptance is �18%.

momentum acceptance is simply given by the resonant cuto�, � ' 23:9, so the maximum
allowed deviation in momentum is

�P

P
� Pz � Pcr

Pz
' 1� �

23:9
:

For very low �, the beam is very sti� and the beta function is roughly constant; the
matching condition is determined by the average along the axis of the square of the magnetic
�eld. The beta function is then given by �

?
' 9:4 L=�, and the phase advance per cell is

�=9:4. As � increases, the beta function starts to vary along the cell and the phase advance
per cell is larger than a linear extrapolation would indicate. In particular, a linear �t would
predict resonance at � ' 6:671 �

p
2 ' 29:6, whereas the true resonance is estimated to occur

near � = 23:9. In contrast, consider the thin lens approximation with a half cell replaced by
a single lens having focal length

1

f
=
Z L

0

�2dz =
1

2
�2maxL ' 0:0112 �2 1

L
:

Then, the thin lens cuto� of L=f = 4 indicates a resonance occurring at � = 18:9; which is too
low. This is another indication that the naive expression given by Eq. (17) underestimates

the focal length of an extended lens. In addition, note that the higher order regions of
stability do not appear as solutions of the thin lens model. We will �nd in Section 8 that the

momentum acceptance of extended lens systems tends to be greater than a thin lens model

would predict.
A better numerical �t for the phase advance per cell (again, half of a period in the

17



magnetic �eld) is, in degrees,

� ' 180
�

23:9

8<
:1� 0:19

"
1 �

�
�

23:9

�2#1=29=
; :

This has the correct resonance and in addition reduces to the appropriate limit for small �.

A phase advance of 90 degrees, where particle orbits are sensitive to small perturbations,

occurs when � ' 14:5. Typically we want to restrict the beam to the range 14:5 < � < 23:9.

A good �t for the minimum beta is

�min ' L
9:4

�

"
1 �

�
�

23:9

�2#1=2
:

Close to resonance, this implies that the minimum beta scales as

�min ' 0:56 L
�
�P

P

�1=2
:

The maximum beta is rougly

�max ' L
9:4

�

"
1 �

�
�

23:9

�2#�1=2
;

and becomes large very close to resonance. The aperture required to �t a given beam is
determined by �max, which reaches a smallest value of � 0:64 L at � ' 17. However, there
is little increase in �max until about � = 20.

When considering beam correlations it is useful to know the quantity �
p, de�ned by

�
p �
1

L

I
dz

�p(z)

2
41 +

 
�0p(z)

2

!2

+ �2(z)�2
p(z)

3
5 :

Here, L is the length of a cell, and the integration is taken over a single cell. The focussing
strength along the lattice is

�(z) =
qBz(z)

2Pz
:

A close �t for �
p (in FOFO lattices only) is

�
p '
2

�min

"
1 +

1

2

�
�

23:9

�3#�1
:

Numerical results shown below were obtained in Mathematica using Eq. (22). Approximate

�ts are shown as dashed lines.
As a speci�c example, we consider � = 18:0, which corresponds to a momentum accep-

tance of about � 24%. In Figure 9 we plot �p=L and 1=(L
p) along the cell. In this case,
�min ' 0:35 L. Note that 1=
p varies in the opposite direction as the magnitude of the

magnetic �eld.
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Figure 5: Analytic calculations of phase advance per cell (solid line), in degrees, along with

numerical �t (dashed line).
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Figure 6: Analytic calculations of �min=L (solid line) along with numerical �t (dashed line).
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Figure 7: Analytic calculations of �max=L (solid line) along with numerical �t (dashed line).
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Figure 8: Analytic calculations of �min �
p (solid line) along with numerical �t (dashed line).
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Figure 9: Analytic calculations of �p=L (dashed line) and 1=(L
p) (solid line) for a FOFO
cell with � = 18:0. The average value L �
p is also indicated.

The acceptance of a FOFO channel has been examined in detail by R.C. Fernow [4], with
analytic expressions for the transitions between bounded and unbounded particle motion.
There is good agreement between these exact (in the paraxial approximation) results and the
critical values of � above, which were found by scanning the solutions to the dimensionless

beta function equation. For comparison, it is useful to consider the evolution of the beam
size, R / p�, which in a vacuum with no electric �elds is determined by

R00 + �2R � 1

R3P 2
z

�
m2c2�2N +

1

4
hLcanoni2

�
= 0; (23)

which is similar to the standard envelope equation for a charged particle beam except for the
canonical momentum term from the factor 1 + L2. In addition, the single particle equation

of motion for the radius r is given by

r00 + �2r � 1

r3P 2
z

L2
canon = 0: (24)

From either expression, the critical values of Pz can be found by neglecting the 1=r3 term

and looking for unbounded solutions. The resulting simpli�ed equation,

r00 + �2r = 0; (25)

becomes asymptotically close to the original equation as r becomes large. Thus, the cuto�s

should agree. Another way to justify this is to restrict attention to particles with Lcanon = 0.

This simpli�ed expression is particularly useful because it is linear in radius except for �eld

nonlinearities, and is particularly amenable to analytic solutions.
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For a sinusoidally varying magnetic �eld, we can use a dimensionless length scale � =

�z=L, in which case the radial equation takes the form of the Mathieu equation

�r + [a� 2q cos(2� )]r = 0;

with a = 2q and

q =

�
qBmaxL

4�Pz

�2
=

�
3�

40�

�2
:

The �rst two regions of stability for the Mathieu equation under the restriction that a = 2q

correspond to the following values of �:

� < 24:04; 39:54 < � < 57:14;

which is in good agreement with the results quoted above. The �rst resonance value quoted

above, at � ' 23:9, was in fact too conservative because the swings in beta function near
resonance can be quite large and gave a misleading indication about the ultimate stability
of the motion.

22



8. Extension of Simpli�ed Geometries { Fourier Components and Lattice Types

Here we take a further look at extended solenoids, expressing the magnetic �eld on axis

in terms of Fourier components. It is problematic to maintain the analogy with the thin lens

case, so instead we continue to use the quantity

� � Bmax[T] L[m]

Pz[GeV=c]
;

and we assume a charge of e throughout. The quantity � de�ned for thin lenses scales like

�2`=L. The periodicity of the magnetic �eld is kept at 2L, and the lattice is divided into

cells of length L which are similar except that the magnetic �eld may reverse itself from one

cell to the next.

We �rst consider two general sets of idealized magnetic �eld geometries, obtained by
adding either a second or a third harmonic to an underlying sinusoidally varying magnetic

�eld. We show a \phase diagram" of the regions of bounded motion as determined by the
relative magnitude of the second harmonic. The two magnetic �eld models are

Bz(z) = B1 sin
�
2�z

L

�
+B2 sin

�
4�z

L

�
;

and

Bz(z) = B1 sin

�
�z

L

�
+B3 sin

�
3�z

L

�
:

Note that the addition of a second harmonic destroys the symmetry between positive and
negative �eld regions, and requires a cell length L which is twice the de�nition taken above
for a FOFO lattice. This arti�cially doubles the lattice parameter �, just as in the thin lens

analysis changing the periodicity doubled the parameter �.
In Figures 10 and 11, a picture of the boundaries between bounded and unbounded motion

is shown, and lattice types having di�erent qualitative behavior are labelled according to
the conventions in previous publications [5]. Concrete examples of the AltSol, SFOFO, and
RFOFO lattices are considered below. It is interesting to note the smooth transition between

the AltSol and SFOFO cases; the intermediate region has a vanishingly small region of
instability and roughly corresponds to the case where the beta function drops to a minimum

at both zero and non-zero values of the magnetic �eld. Qualitatively, the shape of the

beta function resembles that of a FOFO lattice, and both the large momentum acceptance
and relatively large minimum beta function mimic the behavior of a FOFO lattice. As
the magnetic �eld component B3 is increased, the minimum at low �eld decreases and the

minimum at high �eld increases, leading to an SFOFO type of lattice. If B3 is decreased,

the magnetic �eld becomes more peaked, and the local minima of the beta function move
in the opposite direction, leading to an AltSol type of lattice. In either case, the minimum

beta achieved becomes smaller as the magnetic �eld geometry is deformed away from the
intermediate case. The choice of which way to alter the �eld in a given lattice will probably

be determined by engineering considerations.

We now consider in detail three examples of lattices designed for minimizing the beta
function. A magnetic �eld created by current sheets has been used for single particle tracking,
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Figure 10: Phase diagram for lattice behavior when the second harmonic is added to a

sinusoidal magnetic �eld. The lattice behavior with momentum, parametrized by � =
Bmax[T]L[m]=Pz[GeV=c], is indicated as a function of B2=B1, the ratio of the two Fourier
components of the axial magnetic �eld.
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Figure 11: Phase diagram for lattice behavior when the third harmonic is added to a

sinusoidal magnetic �eld. The lattice behavior with momentum, parametrized by � =

Bmax[T]L[m]=Pz[GeV=c], is indicated as a function of B3=B1, the ratio of the two Fourier

components of the axial magnetic �eld.
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and the resulting magnetic �eld on axis has been roughly matched to a Fourier decomposition

using up to three harmonics. Each example corresponds to one of the basic types of lattice

in the second stability region.

The �rst, which is an \alternating solenoid" type (denoted AltSol), has the minimumbeta

in a region of high magnetic �eld and cannot be equated with a thin lens model. The second

two models are similar to the bi-periodic thin lens systems examined in Section 5; these will

both be referred to as Super-FOFO lattices because of the additional periodicity. The �rst,

denoted SFOFO, has both even and odd symmetry points in the axial �eld, and the other,

denoted RFOFO, has only odd symmetry points. These particular examples are comparable

to each other and they both approximate the con�gurations as listed in [6]. These lattices

correspond to extended versions of the doubly-periodic thin lens systems, with the possibility

of bucking coils being added in the gaps between solenoid pairs to reduce the fringe �elds.

The RFOFO design is less likely to require bucking coils and so can more easily be designed

for high peak magnetic �elds.

AltSol:

First, we consider an \alternating solenoid" example, which is close to a simple sinusoid.

The FOFO lattice has been described in detail in Section 7. Given the small bore size of the
magnets compared to the periodicity in the coil geometry shown below, the magnetic �eld
on axis is not purely sinusoidal but has a more square pro�le. An approximation to this
magnetic �eld is

Bz(z) '
Bmax

0:972

�
sin

�
�z

L

�
+ 0:03 sin

�
3�z

L

�
� 0:12 sin

�
5�z

L

��
:

There is only one region of maximum magnetic �eld in each cell, which is also where the
minimum beta occurs.

There are two regions of acceptance which we consider. The �rst corresponds to a FOFO
type region and is given by

0 < � <
�

23:5;

although there is a harmonic resonance in the betatron tune, corresponding to 90 degree

phase advance per cell, at � ' 14:0, as well as other resonances. There is also a second
region of stability at lower momenta in the range 36:3 <

�
� <

�
51:4.

In the second region of stability the momentum range �P=P , which is the momentum
acceptance as de�ned above, has the value

�P

P
' 0:17:

This is smaller than the typical value of 0.24 used in FOFO channels. However, at � ' 42:6,
which is at the center of the momentum acceptance region, the minimum �

?
is given by

�M ' 0:061 L;

which is much smaller than what can be achieved in the \FOFO" region for the same

momentum acceptance. For these narrow bands of momentum acceptance, the minimum
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Figure 12: AltSol example, plot of magnetic �eld on axis, and of matched �
?
for a beam

with no net canonical momentum.

beta at the center of the momentum range is practically equivalent to the de�nition of �M
used in Section 5.

In Figure 12, the magnetic �eld is shown for a lattice with L = 0:65 m, and Bmax ' 9:96
T, for which the central momentum is P0 ' 150 MeV/c. The beta function as calculated by
a moments code [3] is indicated. The minimum beta for Pz = P0 is roughly 3.8 cm, and the

allowed range of momenta is 125 MeV/c <
�

Pz <
�
175 MeV/c, which represents a momentum

acceptance of �17%. This corresponds to �M ' 0:058 L and 37:1 <
�

� <
�

52:1, which is a
reasonable match with the results using Fourier components for the magnetic �eld. All �gures
are for systems de�ned by simple coil con�gurations rather than the idealized description of
the magnetic �elds on axis in terms of Fourier components. A sketch of the coil con�guration

used for these results is given in Figure 13.

SFOFO:

The magnetic �eld on axis is approximately

Bz(z) '
Bmax

1:7

�
sin

�
�z

L

�
+ 1:1 sin

�
3�z

L

�
+ 0:2 sin

�
5�z

L

��
:

The maxima of the magnetic �eld are separated by L=3. There are two regions of acceptance
which we consider. The one corresponding to Region I in the thin lens analysis is given by

0 < � <
�

28:5;

although there is a harmonic resonance in the betatron tune at � ' 16:5. There is also a

region of momentum acceptance at low momenta corresponding to Region II, 38:8 <
�

� <
�

54:5.
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Figure 13: Coil con�guration corresponding to AltSol geometry. Numbers correspond to
current density, each solenoid is modelled with 4 current sheets, with 2:85 � 106 A/m for
each current sheet. Each solenoid is 17 cm long and 12 cm thick, with a 10 cm diameter

bore. The cell length is 0.65 m, and the peak �eld on axis is 9.96 T. There is a 5 cm gap
between adjacent pairs of solenoids.

It is di�cult to compare directly between cases because the region of high magnetic �eld
is more localized in the Super-FOFO cases. We already have a strong contrast to the thin

lens case, however; the range �P=P , which is the momentum acceptance as de�ned above,
has the value

�P

P
' 0:17;

while for the thin lens case �P=P <
�

0:17 even for the case of barely broken symmetry. At

� ' 45:3, which is at the center of the momentum acceptance region, the minimum �
?
is

given by

�M ' 0:071 L:

In Figure 14, the magnetic �eld is shown for a lattice with L = 0:50 m, and Bmax ' 10:75

T, for which the central momentum is P0 ' 120 MeV/c. The beta function as calculated by
a moments code [3] is indicated. The minimum beta for Pz = P0 is roughly 3.7 cm, and the

momentum acceptance is �17%, with an allowed range of momenta 100 MeV/c <
�

Pz <
�

140 MeV/c. This corresponds to �M ' 0:074 L and 38:4 <
�

� <
�

53:8, which is a reasonable

match with the results using Fourier components for the magnetic �eld. A sketch of the coil
con�guration used for these results is given in Figure 15.
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Figure 14: SFOFO example, plot of magnetic �eld on axis, and of matched �
?
for a beam

with no net canonical momentum.
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Figure 15: Coil con�guration corresponding to SFOFO geometry. Numbers correspond to

average current density; each solenoid is modelled with 4 current sheets. Large solenoid: 12

cm long and 12 cm thick with a 10 cm diameter bore, and 6:0 � 106 A/m for each current

sheet. Small solenoid: 10 cm long and 12 cm thick with a 40 cm diameter bore, and 4:9�106

A/m for each current sheet. The cell length is 0.50 m, and the peak �eld on axis is 10.75 T.

There is a 4 cm gap between adjacent pairs of large solenoids.
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RFOFO:

The magnetic �eld on axis is approximately

Bz(z) '
Bmax

1:213

�
sin

�
2�z

L

�
+ 0:4 sin

�
4�z

L

�
+ 0:05 sin

�
6�z

L

��
:

For comparison with SFOFO, we de�ne L to be the length of a unit cell, which repeats itself

without reversing the magnetic �eld, unlike the other two examples. The maxima of the

magnetic �eld are separated by about 0:33 L. There are two regions of acceptance which we

consider. The one corresponding to Region I is given by

0 < � <
�

28:4:

Because the symmetry is already broken, the case of 90 degree phase advance per cell is less
signi�cant. There is also a region of momentum acceptance at low momenta corresponding
to Region II, 38:6 <

�
� <

�
54:4. The range �P=P is

�P

P
' 0:17;

which is smaller than in SFOFO. At � ' 45:2, which is at the center of the momentum
acceptance region, the minimum �

?
is given by

�M ' 0:070 L:

In Figure 16, the magnetic �eld is shown for a lattice with L = 0:55 m, and Bmax ' 9:84
T, for which the central momentum is P0 ' 120 MeV/c. The beta function as calculated by

a moments code [3] is indicated. The minimum beta for Pz = P0 is roughly 3.9 cm, and the
momentum acceptance is �17%, with an allowed range of momenta 100 MeV/c <

�
Pz <

�

140 MeV/c. This corresponds to �M ' 0:071 L and 38:6 <
�

� <
�

54:3, which is a reasonable
match with the results using Fourier components for the magnetic �eld. Note that compared
with the SFOFO design, the cell length was stretched by 5 cm, while the small gap between

magnets was kept constant. A sketch of the coil con�guration used for these results is given

in Figure 17.
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Figure 16: RFOFO example, plot of magnetic �eld on axis, and of matched �
?
for a beam

with no net canonical momentum.

0.55 1.1L (m)

0.2

R (m)
RFOFO

+163 -163 +163 -163
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Figure 17: Coil con�guration corresponding to RFOFO geometry. Numbers correspond to
average current density; each solenoid is modelled with 4 current sheets, with 4.90 �106 A/m
for each current sheet. Solenoids are 12 cm long and 12 cm thick, with a 10 cm diameter

bore. The cell length is 0.55 m, and the peak �eld on axis is 9.84 T. There is a 4 cm gap
between adjacent pairs of solenoids.
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Summary:

These cases all are chosen to have roughly similarminimumbeta function and momentum

acceptance. We see that the required current density to propagate the samemomentumbeam

is signi�cantly less for the RFOFO lattice than for the SFOFO. The AltSol case requires

even less current density, and furthermore can propagate a higher momentum beam for the

same peak magnetic �eld.

As a quality factor for describing these results, consider

Qc �
L

�M

�
�P

P

�2
:

For a thin lens, Qc varies in the range 0:12 and 0:25, with the lower values only for d=L

close to 1=2. The beta functions found for the examples considered here correspond loosely

to d ' 0:4 L. For SFOFO, we have Qc ' 0:39, and for RFOFO, Qc ' 0:41, which indi-
cates that the allowed range of momenta is about 30% wider than expected from thin lens
calculations. For a purely sinusoidal magnetic �eld, the second stability region has a qual-

ity factor Qc ' 0:54, while for the realistic AltSol case Qc ' 0:49. Note that this quality
factor does not describe the relative di�culty in producing the di�erent lattice geometries.
The better energy acceptance for these cases is important for achieving cooling goals. The
smooth variation in the magnetic �eld helps to propagate o�-momentum particles. This
suggests a positive role for the fringe �elds of magnets, although the shaping of the magnetic

�eld can also be achieved through a variation in current density in a magnet with small
aperture. Because these lattices depend upon rapidly varying the magnetic �eld, it would be
advantageous to design coils that produce this geometry without \wasting" as much current
through cancellations of the magnetic �eld produced by opposing magnets.
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9. Coupling to Longitudinal Motion: Amplitude Correlation

In considering nonlinear e�ects, an important source of coupling is the correlation between

energy and transverse amplitude in a bunched beam. This correlation comes about because

the average forward velocity of a particle is given by

�vz ' v

�
1 � 1

4
(A2

1 +A2
2) �
p +

Lcanon

Pz
��

�
; (26)

where �x is the average of the quantity x for a single particle over many betatron oscillations.

The resulting spread in velocities leads to di�erent Ez from an RF system being experienced

by particles that start out in the same longitudinal phase space. There is also a correlation

with canonical angular momentum unless the magnetic �eld repeatedly reverses direction.

For a spinning beam, this varies even for particles having the same total amplitude A2
?
as

de�ned above. Thus, in the presence of RF nonlinear e�ects, in particular coupling between
the transverse and longitudinal motion, can cause a beam to separate into a complicated
function interrelating A2

1+A2
2, Lcanon, and longitudinal amplitude. Thus the beam envelope

model used above should be further generalized to a full 6D model to describe a bunched

beam with net canonical momentum. However, the above expressions are convenient as a
relatively simple set of equations for the beam, and usually we consider beams with a small
value of L.

Now we consider the form of the RF bucket, and the distribution in longitudinal phase
space once the amplitude correlation has been taken into account. For simplicity, we con-
sider a lattice with �� = 0 and a beam with L = 0, so there are no canonical momentum

correlations. Neglecting transit time e�ects and smoothing out the forces, the RF system
can be roughly modelled as a time-varying potential. Letting t be the time relative to a
reference particle for crossing at a �xed position, the equations of motion in an RF simplify
to:

E0 = �E [sin(!t+ �)� sin�]

t0 =

�
1

vz

�
� 1

vR
;

where �E is the average peak gradient of the RF and vR is the velocity of the reference

particle. The reference phase � here counteracts the energy loss in the absorber. Treating

the amplitude e�ect as a small term, we approximate the time equation as

t0 ' 1

v
� 1

vA

with

vA = vR

�
1 +

1

4
�
pA

2

�
;

here, A2 � A2
1 +A2

2 and

�
p =
1

L

I �
1 + �2

p + �2
p�

2
� dz

�p(z)
;
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L is the length per cell, and the integral is taken over a single cell. The focussing strength

along the lattice is

�(z) =
qBz(z)

2Pz
:

Then the equation of motion can be written in terms of a Hamiltonian

U =
E � EA

vA
� (P � PA)�

�E
!
[cos(!t+ �)� cos �+ !t sin�] :

For a given amplitude, the RF bucket is centered about an energy above the reference energy,

given by

EA ' ER

"
1 +

1

4
�
pA

2

�
PR

mc

�2#
:

From this point we consider the use of EA as su�cient to incorporate the amplitude de-
pendence in the longitudinal distribution. However, the RF bucket is not a simple harmonic
well so the bucket will be distorted. Expanding to third order in E � EA and in t,

U ' 1

2

m2

P 3
A

(E � EA)
2

�
1 � E � EA

vAPA

�
+
1

2
�E!t2 cos �

�
1� 1

3
!t tan �

�
;

so the RF bucket is asymmetric in both energy and time. Taking into account the distortion
in energy arising from the fact that the distribution is Gaussian in Pz , the energy distribution

is roughly matched when

P0 ' PR

 
1 +

c2�2P
2E2

R

!
:

Similarly, the time should be shifted by roughly

t0 '
1

6
!�2t tan �:

These are only rough estimates, in particular choosing a di�erent criterion for �tting the
Gaussian beam could change this value by as much as a factor of 2. A calculation of the
higher order correlations and their evolution, or simply trial and error, would yield more

de�nitive results.

We proceed to consider transversely matched beams in geometries where the magnetic
�eld periodically reverses sign. Over many cells and many betatron periods, the average

forward velocity of a particle is independent of its initial betatron phase unless there is a
resonance between the betatron period and the lattice spacing. Then the forward velocity

satis�es *
v2

v2z

+
= 1 + h(x0)2i+ h(y0)2i '

�
1 +

1

2
A2 �
p

�
;

For beams which are far from resonance,

�
p '
2

�p
' Pz

qhB2
z i1=2

:
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Note that 
p satis�es


0p = �p(�
2)0;

so it is always changing in the same way as the magnitude of the magnetic �eld.

In an ideal FOFO lattice, a close approximation to �
p is

�
p '
2

�min

"
1 +

1

2

�
Pcr

Pz

�3#�1
;

where
Pcr

Pz
' B[T] L[m]

23:9 Pz[GeV=c]
:

Note that for a FOFO lattice the cell length L is de�ned to be the distance between zeroes

of the magnetic �eld.

For the Super-FOFO lattices described in Section 8, by comparison, �
p falls in the range

0:75

�min

<
�

�
p <
�

0:85

�min

:

A larger �
p indicates a stronger correlation, which depends on the type of lattice and the
actual value of �min.

When �
?
� �p, so the transverse angles are small, we can approximate

hvzi ' v

�
1� 1

4
�
pA

2

�
:

To have a given forward velocity vR, corresponding to a zero-amplitude particle with energy
ER, a particle must have energy

EA ' ER

 
1 +

1

4
�
pA

2 P 2
R

m2c2

!
:

For an RF system which drives synchrotron oscillations that are much longer than the cell
length, so the betatron oscillations have a chance to average out, a matched beam can only

have its longitudinal distribution depend on E, t, and A2, where t is the time relative to a
reference particle for reaching a �xed position. In particular, there should be no dependence

on betatron phase. A very rough condition for this regime is �
?
< �z.

The distribution function generated by ICOOL, however, is expressed in terms of momen-
tum so that there is normally a dependence of betatron phase in the distribution function.

With carefully chosen correlations, however, a distribution with the appropriate properties
can be generated. The forward momentum has the form

Pz = P0 + �P + P2

"
x2 + y2

b2
+

P 2
x + P 2

y

(P0 + �P )2

#
;

where P0, P2, and b are �xed parameters and �P is a random value having a Gaussian

distribution with standard deviation �P . We assume the distribution is created with �
?
= 0

and L = 0 (no net angular canonical momentum). The energy satis�es

E2 = m2c4 + c2(P 2
x + P 2

y + P 2
z );
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which can be made roughly independent of betatron phase if we set

b ' �
?

�
1 +

P0

2P2

��1=2
:

Then, neglecting terms of order A4 and A2�P , the energy is approximately

E2 ' m2c4 + c2(P0 + �P )2 + c2P0 (P0 + 2P2)
A2

�
?

:

This has the correct dependence on amplitude if

P2 ' P0

 
�
?
�
p


2
R

4
� 1

2

!
:

For the case where �
p ' 2=�min, this simpli�es to

P2 '
P 3
0

2m2c2
; b ' �

?

vR

c
:

If the beam is not matched, there will be two main e�ects on the correlation: the amplitude
correlation will undergo synchrotron oscillations about the matched value, and there will
be betatron oscillations of the correlation between betatron phase and energy. There will
always be some jitter because the initial forward velocity is di�erent from the average velocity,
especially when the synchrotron tune approaches a harmonic.

35



10. Conclusions

A paraxial theory for beam envelope equations in solenoidal �elds has been developed,

and applied towards lattices designed for ionization cooling of muons. This theory is similar

in form to the Courant-Snyder formalism for quadrupole focussing systems. The e�ect

of material in the channel does lead to signi�cant changes in transverse emittance, but is

otherwise a small perturbation so long as build-up of canonical angular momentum is avoided

and the average energy loss is recovered by RF acceleration.

Because thin lens systems do not adequately describe the magnetic �eld con�guration in

realistic cooling channels, systems of extended solenoid magnets, typically with signi�cant

fringe �elds, have been modeled in terms of a Fourier decomposition of the magnetic �eld

on axis. This leads to a good prediction of lattice parameters required to propagate a beam,

and of the resulting beta function. In addition, the four basic lattice types so far considered,

FOFO, AltSol, and the two Super-FOFO channels, have all been modelled and put into the
context of this analysis. Trade-o�s between the minimum beta function and momentum
acceptance have been characterized by a quality factor, Qc � (�P=P )2L=�min, where �min is
evaluated for the central value of the momentum range for stable motion within the lattice.

This quality factor ranges from below 0.25 for thin lens systems, to roughly 0.5 for realistic
extended systems.

In addition, without incorporating feedback between longitudinal and transverse phase
space, the longitudinal behavior of a �nite emittance beam can be evaluated in two limiting
cases: where the beam is unbunched, in which case the average velocity as a function of Pz
and amplitude is known; and for a well bunched beam, where correlations between energy
and amplitude for a matched beam were shown. The evolution of these correlations can also
be used to describe poorly matched beams, or for designing transition regions connecting
di�erent lattices.
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